A Maths Textbook Solutions >> Additional Maths 360 (2nd Edition) textbook solutions >>
Ex 12.1
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
ddx(3x−7)=3(−7)(x−8)=−21x−8
(b)
ddx(525√x2)=ddx(52x25)=(52)(25)(x25−1)=x−35=15√x3
(a)
ddx(2x3+4x−3)=2(3)x2+4−0=6x2+4
(b)
ddx(−4x3+5x2−12)=−4(3)x2+5(2)x−0=−12x2+10x
(c)
ddx(π2x23−2x45)=ddx(π23x2−25x4)=π23(2)x−25(4)x3=2π23x−85x3
(d)
ddx(3x820−πx911)=ddx(320x8−π11x9)=320(8)x7−π11(9)x8=65x7−9π11x8
(e) Note a is a constant.
ddx(3a+bx2)=(0)+b(2)x=2bx
(f) Note a and b are constants.
ddx(a2−b2x3)=(0)−b2(3)x2=−32bx2
(a)
ddx(4x+2x)=ddx[4x+2(x)−1]=4+2(−1)x−2=4−2(1x2)=4−2x2
(b)
ddx(100x2+100x)=ddx(100x2+100x−1)=100(2)x+100(−1)x−2=200x−100(1x2)=200x−100x2
(c)
ddx(9x2−3x2)=ddx(9x2−3x−2)=9(2)x−3(−2)x−3=18x+6(1x3)=18x+6x3
(d)
ddx(6x3−1x+3)=ddx(6x−3−x−1+3)=6(−3)x−4−(−1)x−2+0=−18(1x4)+x−2=−18x4+1x2
(e)
ddx(3x+2√x−3)=ddx(3x+2x12−3)=3+2(12)x−12−0=3+x−12=3+1√x
(f)
ddx(8x2+3x−√x)=ddx(8x2+3x−x12)=8(2)x+3−(12)x−12=16x+3−12(1√x)=16x+3−12√x
(a)
dydx=6.5(4)x3=26x3
(b)
s=4t5=4t−5dsdt=4(−5)t−6=−20t−6=−20t6
(c)
f′(x)=−3(−4)x−5=12x−5=12x5
(d)
g′(u)=0.5(35)u−25=310u−25=310(15√u2)=3105√u2
(e)
h′(x)=−54(−15)x−65=14x−65=14(15√x6)=145√x6
(a)
ddx(3x2+x−1√x)=ddx(3x2x12+xx12−1x12)=ddx(3x32+x12−x−12)000000000000000000[aman=am−n]=3(32)x12+(12)x−12−(−12)x−32=92√x+12(1√x)+12(1√x3)=92√x+12√x+12√x3
(b)
ddx(6x2−√x+22x)=ddx(6x22x−x122x+22x)=ddx(3x−12x−12+1x)0000000000[aman=am−n]=ddx(3x−12x−12+x−1)=3−12(−12)x−32+(−1)x−2=3+14(1√x3)−1x2=3+14√x3−1x2
(a)
y=(x−1)(2x+3)=2x2+3x−2x−3=2x2+x−3dydx=2(2)x+1=4x+1
(b)
f(t)=t(√t+3)=t(t12+3)=t32+3t000000[am×an=am+n]f′(t)=32t12+3=32√t+3
(c)
g(r)=(1+√r)(1−√r)=(1)2−(√r)2000000[(a+b)(a−b)=a2−b2]=1−rg′(r)=0−1=−1
(d)
t=3z2(2−√z)=3z2(2−z12)=6z2−3z52000000[am×an=am+n]dtdz=6(2)z−3(52)z32=12z−152√z3
(e)
s=(3p+2)2=(3p)2+2(3p)(2)+22000000[(a+b)2=a2+2ab+b2]=9p2+12p+4dsdp=9(2)p+12=18p+12=6(3p+2)
(f)
h(x)=(2x+1)(x−1)x=2x2−x−1x=2x2x−xx−1x=2x−1−x−1h′(x)=2−0−(−1)x−2=2+x−2=2+1x2
Question 7 - Find the gradient of the curve
(a)
dydx=5(2)x−4+0=10x−4When x=1,dydx=10(1)−4=6
(b)
y=√x(3−2x)=x12(3−2x)=3x12−2x3200000000[am×an=am+n]dydx=3(12)x−12−2(32)x12=32x−12−3x12When x=4,dydx=32(4)−12−3(4)12=−514
(c)
y=(x−1)(2x+3)x=2x2+x−3x=2x2x+xx−3x=2x+1−3x−1dydx=2(1)+0−3(−1)x−2=2+3(1x2)=2+3x2When x=−2,dydx=2+3(−2)2=234
Question 8 - Find the gradient of the curve
The x-coordinates of P and Q can be found by solving simultaneous equations using the equations of the curve and the line.
3x2−8y=−5−8y=−3x2−58y=3x2+5y=38x2+58dydx=38(2)(x)+0=34xEqn of line: 004y−3x=74y=3x+78y=6x+14000 --- (1)Eqn of curve: 003x2−8y=−5000 --- (2)Substitute (1) into (2),3x2−(6x+14)=−53x2−6x−14=−53x2−6x−9=0x2−2x−3=0(x−3)(x+1)=0 x−3=0 or x+1=0x=3x=−1Substitute into dydx,Substitute into dydx,dydx=34(3)dydx=34(−1)=214=−34
y=10x−x=10x−1−xdydx=10(−1)x−2−1=−10x−2−1=−10x2−1Let dydx=−72,−72=−10x2−1−52=−10x252=10x25x2=20x2=205=4x=±√4=±2 Substitute x=2 into eqn of curve,Substitute x=−2 into eqn of curve,y=102−2y=10−2−(−2)=3=−3∴.(2,3)∴.(−2,−3)
The point on the curve where it is least steep is the point where gradient = 0
dydx=2(2)x−3=4x−3Let dydx=0,0=4x−33=4x34=xSubstitute x=34 into eqn of curve,y=2(34)2−3(34)+7=578∴.(34,578)
(i) To find the values of two unknown constants, we need to form two equations linking the constants.
y=x3+px+qUsing (3,16),16=(3)3+p(3)+q16=27+3p+qq=−3p−1100---(1)dydx=(3)x2+p=3x2+pWhen x=3 and dydx=20,20=3(3)2+p20=27+p20−27=p−7=pSubstitute p=−7 into (1),q=−3(−7)−11=21−11=10∴p=−7,q=10
(ii)
dydx=3x2+pWhen dydx=20 and p=−7,20=3x2−720+7=3x227=3x2273=x29=x2±√9=x±3=x∴x-coordinate of other point is −3Substitute x=−3 into eqn of curve,y=(−3)3+(−7)(−3)+(10)=−27+21+10=4∴.(−3,4)
Note the powers of 2 (i.e. 2n) are 2, 4, 8, 16, 32, …, 1024, 2048 and so on…
y=(x−1)(x+1)(x2+1)(x4+1)...(x1024+1)=(x2−1)(x2+1)(x4+1)...(x1024+1)=(x4−1)(x4+1)...(x1024+1)=(x8−1)...(x1024+1)=.=.=.=(x1024−1)(x1024+1)=x2048−1dydx=2048x2047