H2 Maths Revision Notes >>

Integration techniques

(1) Constants & single algebraic terms

If $a$ is constant,

$ \int a \phantom{.} dx = $ $ ax + C $

If $a$ is constant and $n \ne -1$,

$ \int ax^{n} \phantom{.} dx = $ $ {a \over n + 1} x^{n+ 1} + C $

If $a$ is constant,

$ \int ax^{-1} \phantom{.} dx = \int {a \over x} \phantom{.} dx = $ $ a \ln |x| + C $

(2) $ f'(x) [f(x)]^n$

If $n \ne -1$,

$ \int f'(x) [f(x)]^n \phantom{.} dx = $ $ { [f(x)]^{n + 1} \over (n + 1) } + C $


Example

Integrate $ {x + 1 \over (x^2 + 2x - 5)^2 }$ with respect to $x$.

Answer: $ - {1 \over 2(x^2 + 2x - 5)} + C $

Solutions

$ \int f'(x) [f(x)]^{-1} \phantom{.} dx = \int {f'(x) \over f(x)} \phantom{.} dx = $ $ \ln |f(x)| + C $


Example

Integrate $ {4x + 4 \over x^2 + 2x - 5} $ with respect to $x$.

Answer: $ 2 \ln |x^2 + 2x - 5|+ C $

Solutions

(3) Exponential terms

$ \int f'(x) . e^{f(x)} \phantom{.} dx = $ $ e^{f(x)} + C $


Example 1

Integrate $ \sin x e^{\cos x} $ with respect to $x$.

Answer: $ - e^{\cos x} + C $

Solutions


Example 2

Integrate $ {e^{3x} \over 1 - e^{3x}} $ with respect to $x$.

Hint: Need to use integration formula from (2).

Answer: $ -{1 \over 3} \ln | 1 - e^{3x} | + C $

Solutions

(4) Trigonometric terms

$ f'(x) . \sin [f(x)] \phantom{.} dx = $ $ -\cos [f(x)] + C $

$ f'(x) . \cos [f(x)] \phantom{.} dx = $ $ \sin [f(x)] + C $

$ f'(x) . \sec^2 [f(x)] \phantom{.} dx = $ $ \tan [f(x)] + C $

$ f'(x) . \text{cosec}^2 [f(x)] \phantom{.} dx = $ $ - \cot [f(x)] + C $

$ f'(x) . \text{cosec}^2 [f(x)] \phantom{.} dx = $ $ - \cot [f(x)] + C $

$ f'(x) . \sec [f(x)] \tan [f(x)] \phantom{.} dx = $ $ \sec [f(x)] + C $

$ f'(x) . \text{cosec } [f(x)] \cot [f(x)] \phantom{.} dx = $ $ - \text{cosec } [f(x)] + C $


From MF27, if $ \int \tan [f(x)] \phantom{.} dx = \ln | \sec x | + C $, then

$ \int f'(x) . \tan [f(x)] \phantom{.} dx = $ $ \ln | \sec [f(x)] | + C $


From MF27, if $ \int \cot [f(x)] \phantom{.} dx = \ln | \sin x | + C $, then

$ \int f'(x) . \cot [f(x)] \phantom{.} dx = $ $ \ln | \sin [f(x)] | + C $


From MF27, if $ \int \text{cosec } [f(x)] \phantom{.} dx = - \ln | \text{cosec } x + \cot x | + C $, then

$ \int f'(x) . \cot [f(x)] \phantom{.} dx = $ $ - \ln | \text{cosec } [f(x)] + \cot [f(x)] | + C $


From MF27, if $ \int \sec x \phantom{.} dx = \ln | \sec x + \tan x | + C $, then

$ \int f'(x) . \sec [f(x)] \phantom{.} dx = $ $ \ln | \sec [f(x)] + \tan [f(x)] | + C $


Example 1

Integrate $ \cos 3x \sin^3 3x $ with respect to $x$.

Hint: Need to use integration formula from (2).

Answer: $ {1 \over 12} \sin^4 3x + C $

Solutions


Example 2

Integrate $ \cot {1 \over 2}x \sec^2 {1 \over 2}x $ with respect to $x$.

Hint: Need to use integration formula from (2).

Answer: $ 2 \ln | \tan {1 \over 2} x | + C $

Solutions

(5) Trigonometric terms & Double angle formula

Double angle formulas in MF27:

$$ \sin 2A = 2 \sin A \cos A $$

$$ \cos 2A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A $$


Example 1

Integrate $ \sin 3x \cos 3x $ with respect to $x$.

Answer: $ -{1 \over 12} \cos 6x + C $

Solutions


Example 2

Integrate $ \sin^2 2x $ with respect to $x$.

Answer: $ {1 \over 2}x - {1 \over 8} \sin 4x + C $

Solutions


Example 3

Integrate $ 2 \cos^2 \left(x \over 3\right) $ with respect to $x$.

Answer: $ {3 \over 2} \sin \left({2 \over 3}x\right) + x + C $

Solutions

(6) Trigonometric terms & Pythagoras identities

Need to memorise:

$$ \sec^2 A = 1 + \tan^2 A $$

$$ \text{cosec}^2 A = 1 + \cot^2 A $$


Example 1

Integrate $ 2 \tan^2 {x \over 3} $ with respect to $x$.

Answer: $ 6 \tan {x \over 3} - 2x + C $

Solutions


Example 2

Integrate $ \cot^2 (\pi x ) $ with respect to $x$.

Answer: $ -{1 \over \pi} \cos (\pi x) - x + C $

Solutions

(7) Fractions

In MF27:

$$ \int {1 \over x^2 + a^2} \phantom{.} dx = {1 \over a} \tan^{-1} \left(x \over a\right) $$

$$ \int {1 \over \sqrt{a^2 - x^2} } \phantom{.} dx = \sin^{-1} \left(x \over a\right) $$

$$ \int {1 \over x^2 - a^2} \phantom{.} dx = {1 \over 2a} \ln \left| {x - a \over x + a} \right| $$

$$ \int {1 \over a^2 - x^2} \phantom{.} dx = {1 \over 2a} \ln \left| {a + x \over a - x} \right| $$


Example 1

Integrate $ {1 \over \sqrt{3 - 25x^2} } $ with respect to $x$.

Answer: $ {1 \over 5} \sin^{-1} \left(5x \over \sqrt{3}\right) + C $

Solutions


Example 2

Integrate $ {1 \over x^2 - 3x + 2 } $ with respect to $t$.

Answer: $ \ln \left| {x - 2 \over x - 1} \right|+ C $

Solutions (Method 1)

Solutions (Method 2)

Proper fractions in the form ${f(x) \over g(x)}$:

Example

Integrate $ {2x \over \sqrt{5 - 4x - x^2} } $ with respect to $x$.

Answer: $ -2\sqrt{5 - 4x -x^2} - 4 \sin^{-1} \left(x + 2 \over 3\right) + C $

Solutions

Improper fractions in the form ${f(x) \over g(x)}$:

Example

Integrate $ {2x^2 \over x^2 + 3x + 5} $ with respect to $x$.

Answer: $ 2x - 3 \ln (x^2 + 3x + 5) - {2 \over \sqrt{11} } \tan^{-1} \left(2x + 3 \over \sqrt{11}\right)+ C $

Solutions