2021 O Levels Additional Maths Solutions
Notable questions
Paper 1
Question 6(b) - Polynomial and it's quadratic factor
Question 9 - Coordinate geometry involving a kite
Question 12(a) - Exponential equation
Question 12(b) - Logarithmic equation
Question 13(a) - Applications of Differentiation: Connected rate of change
Question 13(b) - Applications of Differentiation: Rate of change
Also, pay attention to the following integration techniques (applicable to questions 4 and 14)
∫1f(x).dx=ln[f(x)]f′(x)+CFor n≠−1,∫[f(x)]n.dx=[f(x)]n+1(n+1).f′(x)+C
Paper 2
Question 3(b) - Integration as reverse of differentiation
Question 7 - Linear law
Question 9 - Circles
Question 10 - Maximum point of curve and area bounded by line and curve
Paper 1 Solutions
Click to display or to hide
Area of rectangle=Length×Width6+5√3=(3+2√3)×WidthWidth=6+5√33+2√3=6+5√33+2√3×3−2√33−2√300000000000[Rationalise]=(6+5√3)(3−2√3)(3+2√3)(3−2√3)=18−12√3+15√3−10(3)(3)2−(2√3)2000000[(a+b)(a−b)=a2−b2]=18+3√3−309−12=3√3−12−3=3√3−3−12−3=−√3+4=(4−√3) cm
Question 2 - Simultaneous equations
xy+10=000--- (1)x+2y+1=0x=−2y−100--- (2)Substitute (2) into (1),(−2y−1)(y)+10=0y(−2y−1)+10=0−2y2−y+10=02y2+y−10=0(2y+5)(y−2)=0 2y+5=0 or y−2=02y=−5y=2y=−52Substitute into (2),Substitute into (2),x=−2(−52)−1x=−2(2)−1=4=−5
Question 3 - Quadratic functions and their graphs
3−12x−2x2=−2x2−12x+3=−2(x2+6x)+3=−2[(x+62)2−(62)2]+3000000[Complete the square]=−2[(x+3)2−9]+3=−2(x+3)2+18+3=−2(x+3)2+21y=3−12x−2x2y=−2(x+3)2+21y=−2[x−(−3)]2+21Turning point: (−3,21)
Question 4 - Integration techniques
∫3x2+43x−5.dx=∫3x2.dx+∫43x−5.dx=∫3x−2.dx+4∫13x−5.dx=3(x−1−1)+4∫13x−5.dx000000000Use ∫xn.dx=xn+1n+1=−3x−1+4[ln(3x−5)3]00000000000Use ∫1f(x).dx=ln[f(x)]f′(x)=−3(1x)+43ln(3x−5)=−3x+43ln(3x−5)+C
Question 5 - Partial fractions
13x−6x2(2x−3)=Ax+Bx2+C2x−313x−6x2(2x−3)=A(x)(2x−3)x2(2x−3)+B(2x−3)x2(2x−3)+C(x2)x2(2x−3)13x−6x2(2x−3)=Ax(2x−3)+B(2x−3)+Cx2x2(2x−3)13x−6=Ax(2x−3)+B(2x−3)+Cx2Let x=0,0000000000000000[Elimination method]0−6=0+B[2(0)−3]+0−6=B(−3)−6=−3B−6−3=B2=B13x−6=Ax(2x−3)+2(2x−3)+Cx2Let x=1.5,13(1.5)−6=0+2(0)+C(1.5)213.5=C(2.25)13.5=2.25C13.52.25=C6=C13x−6=Ax(2x−3)+2(2x−3)+6x2Let x=1,13(1)−6=A(1)[2(1)−3]+2[2(1)−3]+6(1)27=A(1)(−1)+2(−1)+6(1)7=−A−2+6A=−2+6−7A=−3∴13x−6x2(2x−3)=−3x+2x2+62x−3=−3x+2x2+62x−3
(a)
Let P(x)=2x3−x2−13x+kP(2)=2(2)3−(2)2−13(2)+k=16−4−26+k=−14+kSince P(2)=6,000000[Remainder theorem]−14+k=6k=20
(b)
P(x)=2x3−x2−13x+k=2x3−x2−13x+(−6)=2x3−x2−13x−6Polynomial=Divisor×Quotient+Remainder2x3−x2−13x−6=(2x2+ax−3)(x−b)+0, where b is a constant2x3−x2−13x−6=(2x2+ax−3)(x−b)2x3−x2−13x−6=2x3−2bx2+ax2−abx−3x+3b2x3−x2−13x−6=2x3+(a−2b)x2+(−ab−3)x+3bComparing constants,−6=3b−63=b−2=bComparing coefficients of x2,−1=a−2b−1=a−2(−2)−1=a+4−5=a
Question 7 - Graph of sine function
(a)
Max. value=2Min. value=−8Center line: y=2+(−8)2=−3∴c=−3
(b)
Period=π22πb=π22(2π)=πb000000[Cross-multiply]4π=πb4ππ=b4=b
(c)
Amplitude=2−(−8)2=5a=5,b=4,c=−3y=asinbx+cy=5sin4x−3
Question 8 - Stationary value of area and determine it's nature
(a)
Area of rectangle ABCD=Length×Breadth=80×50=4000Area of triangle ABP=12×AP×AB=12×x×80=40xArea of triangle BCQ=12×BC×CQ=12×50×(80−2x)=25(80−2x)=2000−50xArea of triangle PDQ=12×PD×DQ=12×(50−x)×2x=x(50−x)=50x−x2A=4000−40x−(2000−50x)−(50x−x2)=4000−40x−2000+50x−50x+x2=2000−40x+x2=x2−40x+200000 (Shown)
(b)
A=x2−40x+2000dAdx=2x−40Let dAdx=0,000000[Stationary value]0=2x−4040=2x402=x20=xSubstitute x=20 into A=x2−40x+2000,A=(20)2−40(20)+2000=1600d2Adx2=2>0⟹ Minimum value∴Minimum value of A is 1600 m2
Question 9 - Coordinate geometry
(a) In kite ABCD, sides AB = AD and BC = DC
Distance between two points=√(x2−x1)2+(y2−y1)2BC=√(6−0)2+(6−k)2BC=√36+(6)2−2(6)(k)+(k)2000000[(a−b)2=a2−2ab+b2]BC=√36+36−12k+k2BC=√72−12k+k2DC=√(6−h)2+(6−0)2DC=√(6)2−2(6)(h)+(h)2+36DC=√36−12h+h2+36DC=√72−12h+h2Since BC=DC,√72−12k+k2=√72−12h+h272−12k+k2=72−12h+h2k2−12k=h2−12h0=h2−k2−12h+12k0=(h+k)(h−k)−12(h−k)0=(h−k)(h+k−12)
h−k=0 (Reject) or h+k−12=0h+k=1200 (Shown)
(b) In kite ABCD, diagonals AC and BD are perpendicular
h+k=124+k=12k=12−4=8∴B(0,8) and D(4,0)000000[Update in diagram!]Gradient=y2−y1x2−x1Gradient of BD=0−84−0=−2Gradient of AC=−1Gradient of BD=−1−2=12y=mx+cy=12x+cUsing C(6,6)6=12(6)+c6=3+c3=cEqn of line AC:y=12x+3Let y=0,0=12x+3−12x=3x=3−12x=−6∴.A(−6,0)
(c) For 'shoelace' method, select the coordinates in an anti-clockwise manner and repeat the first coordinates chosen
Area of kite ABCD=12|−6460−600680|=12[(−6)(0)+(4)(6)+(6)(8)+(0)(0)]−12[(0)(4)+(0)(6)+(6)(0)+(8)(−6)]=60 units2
Question 10 - Prove trigonometric identity, then solve trigonometric equation
(a) The identity used (sin² A + cos² A = 1) can be found in the provided formula sheet
L.H.S=sinθ1−cosθ−1sinθ=sinθ(sinθ)sinθ(1−cosθ)−1−cosθsinθ(1−cosθ)=sin2θ−(1−cosθ)sinθ(1−cosθ)=sin2θ−1+cosθsinθ(1−cosθ)=1−cos2θ−1+cosθsinθ(1−cosθ)000000[sin2A+cos2A=1→sin2A=1−sin2A]=cosθ−cos2θsinθ(1−cosθ)=cosθ(1−cosθ)sinθ(1−cosθ)=cosθsinθ=cotθ=R.H.S
(b) The word 'Hence' suggests that we need to use the identity proved in (i)
sin2θ1−cos2θ−1sin2θ=−2From (i), sinθ1−cosθ−1sinθ=cotθ∴cot2θ=−21tan2θ=−2−12=tan2θ000000[2nd or 4th quadrant since tan2θ<0]Basic angle, α=tan−1(12)=26.56∘

2θ=180∘−26.56∘,360∘−26.56∘000000[0∘≤θ≤180∘]=153.44∘,333.44∘000000000000000[0∘≤2θ≤360∘]θ=76.72∘,166.72∘≈76.7∘,166.7∘
(a)
Let ∠TCA=θ∠BAC=∠TCA00000[Alternate angles, BA.//.CT]=θ∠ABC=∠TCA00000[Alternate segment theorem]=θSince ∠ABC=∠BAC, triangle ABC is isoceles
(b)
Since tangents meet at external point T,TA=TC∠TAC=∠TCA0000000000[Isosceles triangle]=θ∠CTA=180∘−θ−θ00000[Angle sum of triangle]=180∘−2θ∠BCA=180∘−θ−θ00000[Angle sum of triangle]=180∘−2θ=∠CTA00 (Shown)
Question 12 - Exponential equation & logarithms
(a)
6x=5×3x+1Take lg of both sides,lg6x=lg(5×3x+1)lg6x=lg5+lg3x+100000000.[Product law (logarithms)]xlg6=lg5+(x+1)lg300000[Power law (logarithms)]xlg6=lg5+xlg3+lg3xlg6−xlg3=lg5+lg3x(lg6−lg3)=lg5+lg3xlg63=lg5+lg300000000000.[Quotient law (logarithms)]xlg2=lg(5×3)000000000000.[Product law (logarithms)]xlg2=lg15x=lg15lg200(Shown)
(b)
log3x+log9(x+2)=2log3x+log3(x+2)log39=2000000[Change-of-base]log3x+log3(x+2)log332=2log3x+log3(x+2)2log33=2000000[Power law (logarithms)]log3x+log3(x+2)2(1)=22[log3x+log3(x+2)2]=2(2)2log3x+log3(x+2)=4log3x2+log3(x+2)=4000000[Power law (logarithms)]log3[x2(x+2)]=4000000[Product law (logarithms)]x2(x+2)=34x3+2x2=81x3+2x2−81=0
Question 13 - Connected rate of change & Rate of change
(a) (i)
Volume after 1 min (60 seconds)=500×60=30.000 cm3Let V denote the volume of the balloonV=43πr3When V=30.000,30.000=43πr330.00043π=r37.161.972=r33√7.161.972=r19.275=rRadius≈19.3 cm
(a) (ii)
drdt=drdV×dVdtdrdt=drdV⏟Need to find this×500V=43πr3dVdr=43(3)πr2=4πr2drdV=14πr2When r=19.275,drdV=14π(19.275)2=0.000.214.191∴drdt=0.000.214.191×500=0.107.095≈0.107 cm/s
(b)
PV=kWhen P=1.2 and V=2,(1.2)(2)=k2.4=kPV=2.4V=2.4PV=2.4P−1dVdP=2.4(−1)P−2=−2.4(1P2)=−2.4P2When V=2,P=1.2Substitute P=1.2 into dVdP,dVdP=−2.4(1.2)2=−53 litres per atmosphere
Question 14 - Normal to the curve and the area bounded by curve and normal
(a)
y=(4+3x)12dydx=12(4+3x)−12.(3)000000[Chain rule]=32(1√4+3x)=32√4+3xWhen x=4,dydx=32√4+3(4)=38Gradient of tangent at P=38Gradient of normal at P=−138=−83y=−83x+cUsing P(4,4),4=−83(4)+c4=−323+c443=cEqn of normal at P:y=−83x+443Let y=0,0=−83x+44383x=443x=44383x=512∴.Q(512,0)
(b)
Area under curve=∫40(4+3x)12.dx=[(4+3x)32(32)(3)]4000000000000Use ∫[f(x)]n.dx=[f(x)]n+1(n+1).f′(x).dx=[4+3(4)]3292−[4+3(0)]3292=1249 units2Area under normal at P=Area of triangle=12×(512−4)×4=3 units2Area of shaded region=1249+3=1549 units2
Paper 2 Solutions
Click to display or to hide
Question 1 - Solve exponential equation
3ex+5=2e−x3ex+5=2(1ex)3ex+5=2exLet u=ex,3u+5=2uu(3u+5)=u(2u)3u2+5u=23u2+5u−2=0(3u−1)(u+2)=0
3u−1=0 or u+2=03u=1u=−2u=13Since u=ex,Since u=ex,ex=13ex=−2 (Reject, since ex>0)Take ln of both sides,lnex=ln13xlne=ln13x(1)=ln13x=−1.09861x≈−1.1 (2 s.f.)
∴Only solution of equation is x=−1.1
Question 2 - Solve cubic equation
Let f(x)=3x3+4x2−x−2f(−1)=3(−1)3+4(−1)2−(−1)−2=0By Factor theorem, x+1 is a factor of f(x)∴x=−1 is a solution of the equationPolynomial=Divisor×Quotient+Remainder3x3+4x2−x−2=(x+1)(ax2+bx+c)+03x3+4x2−x−2=(x+1)(ax2+bx+c)3x3+4x2−x−2=ax3+bx2+cx+ax2+bx+c3x3+4x2−x−2=ax3+(a+b)x2+(b+c)x+cComparing constants,−2=cComparing coefficients of x3,3=aComparing coefficients of x2,4=a+b4=3+b1=b3x3+4x2−x−2=(x+1)[(3)x2+(1)x+(−2)]=(x+1)(3x2+x−2)=(x+1)(x+1)(3x−2)=(x+1)2(3x−2)(x+1)2(3x−2)=0x+1=00 or 03x−2=0x=−1000000.3x=2000000000000.x=23
Question 3 - Integration as reverse of differentiation
(a)
dydx=vdudx−udvdxv20000000000000000000[Quotient rule]=(2x+1)12(1)−(x)(2x+1)−12[(2x+1)12]2=(2x+1)12−x(2x+1)−12(2x+1)=(2x+1)−12(2x+1−x)(2x+1)=x+1(2x+1)12(2x+1)=x+1(2x+1)3200 (Shown)
(b)
From (i), ddx[x(2x+1)12]=x+1(2x+1)32⟹∫x+1(2x+1)32.dx=x(2x+1)12∫x(2x+1)32.dx+∫1(2x+1)32.dx=x(2x+1)12∫x(2x+1)32.dx=x(2x+1)12−∫1(2x+1)32.dx=x(2x+1)12−∫(2x+1)−32.dx=x(2x+1)12−(2x+1)−12(−12)(2)000000Use ∫[f(x)]n.dx=[f(x)]n+1(n+1).f′(x)=x(2x+1)12−(2x+1)−12−1=x(2x+1)12+1√2x+1∴∫40x(2x+1)32.dx=[x(2x+1)12+1√2x+1]40=[4[2(4)+1]12+1√2(4)+1]−[0[2(0)+1]12+1√2(0)+1]=23
(a)

sin∠BAE=BEBAsinθ=BE66sinθ=BE∠AGF=180∘−90∘−θ00000[Angle sum of triangle]=90∘−θ∠CGB=90∘−θ00000[Vertically opposite angles]∠GCB=180∘−90∘−(90∘−θ)00000[Angle sum of triangle]=90∘−90∘+θ=θcos∠BCD=CDCBcosθ=CD44cosθ=CDh=CD+DF=4cosθ+BE=4cosθ+6sinθ00 (Shown)
(b)
asinθ+bcosθ=Rsin(θ+α)a=6,b=4R=√a2+b2=√62+42=√52α=tan−1(ba)=tan−1(46)=33.69∘h=√52sin(θ+33.69∘)h≈√52sin(θ+33.7∘)
(c) The maximum value of the sine function R sin (x + α) is R and it occurs when x + α = 90°.
h=√52sin(θ+33.69∘)Max. value of h=√52θ+33.69∘=90∘θ=90∘−33.69∘θ=56.31∘≈56.3∘
Question 5 - Equations and inequalities
(a)
y>11000000[Lies above]2x2−6x+3>112x2−6x−8>0x2−3x−4>0(x+1)(x−4)>0

x<−10 or 0x>4

{x:x∈R.|0x<−1 or 0x>4}
(b)
y=2x2−6x+300--- (1)y=2x+k00--- (2)Substitute (2) into (1),2x+k=2x2−6x+30=2x2−8x+(3−k)b2−4ac=(−8)2−4(2)(3−k)=64−8(3−k)=64−24+8k=40+8kb2−4ac=000[Line meets curve only once]40+8k=08k=−40k=−408k=−5
(c)
From (b), 0=2x2−8x+(3−k)0=2x2−8x+[3−(−5)]0=2x2−8x+80=x2−4x+40=(x−2)20=x−22=xSubstitute x=2 into (1),y=2(2)2−6(2)+3y=−1∴.P(2,−1)
(a)
\begin{align} \left( 2 - {3 \over x}\right)^6 & = (2)^6 + {6 \choose 1} (2)^5 \left(-{3 \over x}\right) + {6 \choose 2} (2)^4 \left(-{3 \over x}\right)^2 + {6 \choose 3} (2)^3 \left(-{3 \over x}\right)^3 + ... \\ & = ... + (15)(16)\left(9 \over x^2\right) + (20)(8)\left(-{27 \over x^3}\right) + ... \\ & = ... + {2160 \over x^2} - {4320 \over x^3} + ... \\ & = ... + 2160 \left(1 \over x^2\right) - 4320 \left(1 \over x^3\right) + ... \end{align}
(b)
\begin{align} (x^2 + ax)\left( 2 - {3 \over x}\right)^6 & = (x^2 + ax) \left[ ... + 2160 \left(1 \over x^2\right) - 4320 \left(1 \over x^3\right) + ... \right] \\ & = ... + (x^2) (-4320) \left(1 \over x^3\right) + (ax)(2160)\left(1 \over x^2\right) + ... \\ & = ... - 4320 \left(1 \over x\right) + 2160 a \left(1 \over x\right) + ... \\ \\ \text{Coefficient of } {1 \over x} & = 2160a - 4320 \\ \\ \text{Since there } & \text{is no terms in } {1 \over x}, \\ 2160a - 4320 & = 0 \\ 2160a & = 4320 \\ a & = {4320 \over 2160} \\ a & = 2 \end{align}
(c)
\begin{align} \left( 2 - {3 \over x}\right)^6 & = (2)^6 + {6 \choose 1} (2)^5 \left(-{3 \over x}\right) + ... \\ & = 64 + (6)(32) \left(-{3 \over x}\right) + ... \\ & = 64 - {576 \over x} + ... \\ & = 64 - 576 \left(1 \over x\right) + ... \\ \\ (x^2 + 2x)\left( 2 - {3 \over x}\right)^6 & = (x^2 + 2x)\left[64 - 576 \left(1 \over x\right) + ...\right] \\ & = ... + (x^2)(-576)\left(1 \over x\right) + (2x)(64) + ... \\ & = ... - 576x + 128x + ... \\ & = ... - 448x + ... \\ \\ \text{Coefficient} & \text{ of } x = -448 \end{align}
(a)
\begin{align} d & = av^2 + bv \\ {1 \over v}(d) & = {1 \over v}(av^2 + bv) \\ {d \over v} & = av + b \phantom{000000} [Y = mX + c]\\ \\ \text{1) Plot } & {d \over v} \text{ against } v \\ \text{2) Grad} & \text{ient of line is equals to } a \\ \text{3) Verti} & \text{cal intercept is equals to } b \end{align}
(b)(i)
\begin{align} n & = ab^t \\ \\ \text{Take } & \lg \text{ of both sides}, \\ \lg n & = \lg (ab^t) \\ \lg n & = \lg a + \lg b^t \phantom{000000} [\text{Product law (logarithms)}] \\ \lg n & = \lg a + t \lg b \phantom{000000} [\text{Power law (logarithms)}] \\ \\ \lg n & = (\lg b)(t) + \lg a \phantom{000000} [Y = mX + c]\\ \\ \text{Plot } & \lg n \text{ against } t \end{align}
t | 1 | 2 | 3 | 4 |
lg n | 2.908 | 2.653 | 2.380 | 2.130 |

(b)(ii) For the next decade (2000-2009), t = 5
\begin{align} \text{From graph, } \lg n & = 1.87 \\ \log_{10} n & = 1.87 \\ n & = 10^{1.87} \\ & \approx 74.1 \end{align}
(b)(iii)
\begin{align} \text{Efforts may be undertaken to reduce the decrease, such as harsh penalties on poachers} \end{align}
(a)
\begin{align} v & = 24e^{-{t \over 6}} \\ \\ \text{When } & t = 0, \\ v & = 24e^{-{0 \over 6}} \\ v & = 24(1) \\ v & = 24 \\ \\ \text{Velocity at } A & = 24 \text{ m/s} \\ \\ \text{Velocity at } B & = {1 \over 2} \times 24 \\ & = 12 \text{ m/s} \\ \\ \text{Substitute } & v = 12 \text{ into } v = 24e^{-{t \over 6}} \\ 12 & = 24e^{-{t \over 6}} \\ {12 \over 24} & = e^{-{t \over 6}} \\ {1 \over 2} & = e^{-{t \over 6}} \\ \\ \text{Take } \ln & \text{ of both sides,} \\ \ln {1 \over 2} & = \ln e^{-{t \over 6}} \\ \ln {1 \over 2} & = -{t \over 6} \ln e \phantom{000000} [\text{Power law (logarithms)}] \\ \ln {1 \over 2} & = -{t \over 6} (1) \\ \ln {1 \over 2} & = -{t \over 6} \\ -6 \ln {1 \over 2} & = t \\ \\ \text{Time taken} & = -6 \ln {1 \over 2} \\ & = 4.1588 \\ & \approx 4.16 \text{ seconds} \end{align}
(b)
\begin{align} a & = {dv \over dt} \\ & = {d \over dt} (24 e^{-{1 \over 6}t}) \\ & = 24 \left(-{1 \over 6}\right) e^{-{1 \over 6}t} \phantom{00000000} \text{Use } {d \over dx}[e^{f(x)}] = f'(x) . e^{f(x)} \\ & = -4 e^{-{1 \over 6}t} \\ \\ \text{When } & t = 4.1588, \\ a & = -4e^{-{1 \over 6}(4.1588)} \\ & = -2 \text{ m/s}^2 \end{align}
(c)
\begin{align} s & = \int v \phantom{.} dt \\ s & = \int 24 e^{-{t \over 6}} \phantom{.} dt \\ s & = 24 \left( e^{-{t \over 6}} \over -{1 \over 6} \right) + c \\ s & = - 144 e^{-{t \over 6}} + c \\ \\ \text{When } & t = 0 \text{ and } s = 0, \phantom{000000} [\text{Initially at } A] \\ 0 & = -144e^{-{0 \over 6}} + c \\ 0 & = -144(1) + c \\ 0 & = -144 + c \\ 144 & = c \\ \\ s & = - 144 e^{-{t \over 6}} + 144 \\ \\ \text{When } & t = 4.1588, \\ s & = - 144 e^{-{4.1588 \over 6}} + 144 \\ & = 71.999 \\ & \approx 72.0 \text{ m} \end{align}
(a)
\begin{align} (x + 2a)^2 + (y - a)^2 & = ka^2 \\ [x - (-2a)]^2 + (y - a)^2 & = 4a^2 \\ [x - (-2a)]^2 + (y - a)^2 & = (2a)^2 \\ \\ \text{Center: } & (-2a, a) \\ \\ \text{Radius} & = 2a \text{ units} \end{align}
Note a is a positive value, so circle lies to the left of the y-axis:

\begin{align} y \text{-axis meets circle at } (0, a) & \text{ and is perpendicular to radius} \\ \\ \therefore y \text{-axis is tangent to the circ} & \text{le at } (0, a) \end{align}
(b) Refer to the sketch in part (a) - the two tangents are marked in blue
\begin{align} a + 2a & = 3a \\ \\ a - 2a & = -a \\ \\ \text{Points: } & (-2a, -a) \text{ and } (-2a, 3a) \end{align}
(c)
\begin{align} (x + 2a)^2 + (y - a)^2 & = ka^2 \\ (x + 2a)^2 + (y - a)^2 & = 5a^2 \\ \\ \text{Let } & x = 0, \\ (0 + 2a)^2 + (y - a)^2 & = 5a^2 \\ (2a)^2 + (y - a)^2 & = 5a^2 \\ 4a^2 + (y - a)^2 & = 5a^2 \\ (y - a)^2 & = a^2 \\ y - a & = \pm \sqrt{a^2} \\ y - a & = a \text{ or } - a \\ y & = 2a \text{ or } 0 \\ \\ \therefore \text{Circle passes through } & \text{origin (0, 0)} \end{align}
(d)

\begin{align} (x + 2a)^2 + (y - a)^2 & = 5a^2 \\ [x - (-2a)]^2 + (y - a)^2 & = 5a^2 \\ \\ \text{Centre: } & (-2a, a) \\ \\ \text{Let } (b, c) \text{ denote } & \text{coordinates of } P \\ \\ \text{Midpoint} & = \left( {x_1 + x_2 \over 2}, {y_1 + y_2 \over 2} \right) \\ \\ \text{Midpoint of } OP & = \left( {0 + b \over 2}, {0 + c \over 2} \right) \\ & = \left( {b \over 2}, {c \over 2}\right) \\ \\ \text{Since } OP \text{ is the diameter, } & \text{midpoint is the centre of the circle} \\ \\ (-2a, a) & = \left( {b \over 2}, {c \over 2}\right) \\ \\ {b \over 2} & = -2a \\ b & = -4a \\ \\ {c \over 2} & = a \\ c & = 2a \\ \\ \therefore & \phantom{.} P(-4a, 2a) \\ \\ \\ \text{Gradient of } OP & = {2a - 0 \over -4a - 0} \\ & = {2a \over -4a} \\ & = -{1 \over 2} \\ \\ \text{Gradient of tangent at } P & = {-1 \over -{1 \over 2}} \\ & = 2 \\ \\ y & = mx + c \\ y & = 2x + c \\ \\ \text{Using } & P(-4a, 2a), \\ 2a & = 2(-4a) + c \\ 2a & = -8a + c \\ 10a & = c \\ \\ \text{Eqn of tangent at } & P : y = 2x + 10a \\ \\ \text{Let } & y = 0, \\ 0 & = 2x + 10a \\ -2x & = 10a \\ x & = {10a \over -2} \\ x & = -5a \\ \\ \therefore \text{Coordinates of } & \text{point: } (-5a, 0) \end{align}
Question 10 - Maximum point of curve and find area of shaded region
Thought process:
- The shaded area is the difference between the area bounded by the curve and the area bounded by the line OM (triangle)
- To find the respective areas, we need the coordinates of point M
- To find the x-coordinates of maximum point M, we need to find dy/dx and equate it to 0, then solve for the y-coordinate
\begin{align} y & = 4 \sin {x \over 2} - x \\ y & = 4 \sin \left({1 \over 2}x \right) - x \\ \\ {dy \over dx} & = 4 \left({1 \over 2}\right) \cos \left({1 \over 2}x \right) - 1 \phantom{000000000} \text{Use } {d \over dx}[\sin f(x)] = f'(x). \cos f(x) \\ & = 2 \cos \left({1 \over 2}x \right) - 1 \\ \\ \text{Let } & {dy \over dx} = 0, \phantom{000000} [\text{Maximum point } M] \\ 0 & = 2 \cos \left({1 \over 2}x \right) - 1 \\ -2 \cos \left({1 \over 2}x \right) & = -1 \\ \cos \left({1 \over 2}x \right) & = {1 \over 2} \phantom{000000000} \left[\text{1st or 4th quadrant since } \cos \left({1 \over 2}x\right) > 0 \right] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(1 \over 2\right) \\ & = 60^\circ \\ & = {\pi \over 3} \end{align}

\begin{align} {1 \over 2}x & = {\pi \over 3}, 2\pi - {\pi \over 3} \phantom{00000000000} [0 \le x \le \pi] \\ & = {\pi \over 3}, {5\pi \over 3} \text{ (Reject)} \phantom{0000000} \left[ 0 \le {1 \over 2}x \le {1 \over 2}\pi \right] \\ \\ x & = 2 \left(\pi \over 3\right) \\ x & = {2\pi \over 3} \\ \\ \text{Substitute } & x = {2\pi \over 3} \text{ into } y = 4 \sin \left({1 \over 2}x\right) - x, \\ y & = 4 \sin \left[ {1 \over 2} \left(2\pi \over 3\right) \right] - {2\pi \over 3} \\ y & = 4 \sin {\pi \over 3} - {2\pi \over 3} \\ y & = 4 \left(\sqrt{3} \over 2\right) - {2\pi \over 3} \\ y & = 2 \sqrt{3} - {2\pi \over 3} \\ \\ \therefore & \phantom{.} M \left({2\pi \over 3}, 2 \sqrt{3} - {2\pi \over 3} \right) \\ \\ \\ \text{Area under curve} & = \int_0^{2\pi \over 3} 4 \sin \left({1 \over 2}x\right) - x \phantom{.} dx \\ & = \left[ 4 \left(- \cos \left({1 \over 2}x\right) \over {1 \over 2} \right) - {x^2 \over 2} \right]_0^{2\pi \over 3} \phantom{000000} \text{Use } \int \sin f(x) \phantom{.} dx = {- \cos f(x) \over f'(x)} \\ & = \left[ - 8 \cos \left({1 \over 2}x\right) - {1 \over 2} x^2 \right]_0^{2\pi \over 3} \\ & = \left[ - 8 \cos \left[{1 \over 2}\left(2\pi \over 3\right)\right] - {1 \over 2} \left(2\pi \over 3\right)^2 \right] - \left[ - 8 \cos \left[{1 \over 2}(0)\right] - {1 \over 2} (0)^2 \right] \\ & = \left[ - 8 \cos {\pi \over 3} - {1 \over 2} \left(4 \pi^2 \over 9\right) \right] - \left[ - 8 \cos 0 - 0 \right] \\ & = \left[ - 8 \left(1 \over 2\right) - {2\pi^2 \over 9} \right] - [- 8(1)] \\ & = - 4 - {2\pi^2 \over 9} + 8 \\ & = 4 - {2\pi^2 \over 9} \\ \\ \text{Area under line } OM & = \text{Area of triangle} \\ & = {1 \over 2} \times {2\pi \over 3} \times \left(2\sqrt{3} - {2\pi \over 3}\right) \\ & = {\pi \over 3} \left(2\sqrt{3} - {2\pi \over 3}\right) \\ & = {2\pi \sqrt{3} \over 3} - {2\pi^2 \over 9} \\ \\ \text{Area of shaded region} & = 4 - {2\pi^2 \over 9} - \left( {2\pi \sqrt{3} \over 3} - {2\pi^2 \over 9} \right) \\ & = 4 - {2\pi^2 \over 9} - {2\pi \sqrt{3} \over 3} + {2\pi^2 \over 9} \\ & = 4 - {2\pi \sqrt{3} \over 3} \text{ units}^2 \phantom{00} \text{ (Shown)} \end{align}