Paper 1 Solutions
Click to display or to hide
Question 1 - Exponential function: Real-life problem
\begin{align*}
\text{Let price of item} & = P \\
\\
\text{Initially, } P & = 300 \\
\\
\text{After 1 month, } P & = 300 \times 0.95 \phantom{00000} [100\% - 5\% = 95\% = {95 \over 100} = 0.95] \\
P & = 300(0.95) \\
\\
\text{After 2 months, } P & = 300(0.95) \times 0.95 \\
P & = 300(0.95)^2 \\
\\
\text{After 3 months, } P & = 300(0.95)^2 \times 0.95 \\
P & = 300(0.95)^3 \\
\\
\implies \text{After } n \text{ months, } P & = 300(0.95)^n \\
\\
\text{Let } & P = 120, \\
120 & = 300 (0.95)^n \\
{120 \over 300} & = (0.95)^n \\
0.4 & = (0.95)^n \\
\lg 0.4 & = \lg (0.95)^n \\
\lg 0.4 & = n \lg 0.95 \phantom{000000} [\text{Power law (logarithms)}] \\
\\
n & = {\lg 0.4 \over \lg 0.95} \\
n & = 17.86 \\
\\
\text{When } & n = 17, \\
P & = 300(0.95)^{17} \approx \$ 125.44 \\
\\
\text{When } & n =18, \\
P & = 300(0.95)^{18} \approx \$ 119.16 < \$ 120 \\
\\
\therefore 18 \text{ complete months} & \text{ have elapsed before item is sold.}
\end{align*}
Question 2 - Equation & inequalities: Curve lies completely below line
\begin{align*}
\text{Substitute } y = x + 1 & \text{ into } y = kx^2 + 2x + k + 1, \\
x + 1 & = kx^2 + 2x + k + 1 \\
0 & = kx^2 + 2x - x + k + 1 - 1 \\
0 & = kx^2 + x + k \\
\\
b^2 - 4ac & = (1)^2 - 4(k)(k) \\
& = 1 - 4k^2 \\
\\
b^2 - 4ac & < 0 \phantom{000000} [\text{Line does not meet curve}] \\
1 - 4k^2 & < 0 \\
4k^2 - 1 & > 0 \\
(2k)^2 - (1)^2 & > 0 \\
\underbrace{ (2k + 1)(2k - 1) }_{ a^2 - b^2 = (a + b)(a - b)} & > 0
\end{align*}
\begin{align*}
k < - {1 \over 2} & \text{ or } k > {1 \over 2} \\
\\
\text{For } y = kx^2 + 2x + k + 1 & \text{ to be completely } \textbf{below} \text{ the line}, \\
\text{it is must be a maximum } & \text{curve } (\cap) \text{, thus } k < 0 \\
\\
\therefore k & < - {1 \over 2}
\end{align*}
Question 3 - Polynomials: a3 - b3
(a)(i)
\begin{align*}
a^3 - b^3 & = (a - b)(a^2 + ab + b^2) \phantom{000000} [\text{Need to memorise}]
\end{align*}
(a)(ii)
\begin{align*}
347^3 - 286^3 & = (347 - 286)[(347)^2 + (347)(286) + (286)^2] \\
& = (61)(301 \phantom{.} 447) \\
\\
\text{Factor} & = 61 \text{ or } 301 \phantom{.} 447
\end{align*}
(b)
\begin{align*}
{(x + n)^3 \over 2} - {(x - n)^3 \over 2} & = { (x + n)^3 - (x - n)^3 \over 2 } \\
& = { [ (x + n) - (x - n) ] [ (x + n)^2 + (x + n)(x - n) + (x - n)^2 ] \over 2 }
\phantom{000000} [a = x + n, b = x - n] \\
& = { ( x + n - x + n ) [ (x + n)^2 + (x + n)(x - n) + (x - n)^2 ] \over 2 } \\
& = { 2n [(x + n)^2 + (x + n)(x - n) + (x - n)^2] \over 2 } \\
& = n [(x + n)^2 + (x + n)(x - n) + (x - n)^2] \\
\\
\therefore \text{Since expression is a } & \text{multiple of } n, \text{ it is divisible by } n
\end{align*}
Question 4 - Differentiation & Integration as reverse of differentiation
(a)
\begin{align*}
u & = x^{n + 1} &&& v &= \ln x \\
{du \over dx} & =(n + 1)x^n &&& {dv \over dx} & = {1 \over x}
\end{align*}
\begin{align*}
{d \over dx} (x^{n + 1} \ln x)
& = (x^{n + 1})\left(1 \over x\right) + (\ln x)(n + 1)(x^n) \phantom{000900} [\text{Product rule}] \\
& = (x^{n + 1}) (x^{-1}) + (\ln x)(n + 1)(x^n) \\
& = x^{n + 1 + (-1)} + (\ln x)(n + 1)(x^n) \phantom{000000000} [a^m \times a^n = a^{m + n} ] \\
& = x^n + (\ln x)(n + 1)(x^n)
\end{align*}
(b)
\begin{align*}
{d \over dx} (x^{n + 1} \ln x) & = x^n + (\ln x)(n + 1)(x^n) \\
\\
\implies \int x^n \phantom{.} dx + \int (\ln x)(n + 1)(x^n) \phantom{.} dx & = x^{n + 1} \ln x \\
\int (\ln x)(n + 1)(x^n) \phantom{.} dx & = x^{n + 1} \ln x - \int x^n \phantom{.} dx \\
\underbrace{ (n + 1) \int (\ln x)(x^n) \phantom{.} dx }_{\text{Can factorise } (n + 1) \text{ since it is a constant}} & = x^{n + 1} \ln x - {x^{n + 1} \over n + 1} \\
\int (\ln x)(x^n) \phantom{.} dx & = {1 \over n + 1} \left( {x^{n + 1} \ln x \over 1} - {x^{n + 1} \over n + 1} \right) \\
\int (\ln x)(x^n) \phantom{.} dx & = { x^{n + 1} \ln x \over n + 1} - {x^{n + 1} \over (n + 1)^2} + C
\end{align*}
Question 5 - Linear law
Question 6 - Differentiation: Stationary point and it's nature
Question 7 - Binomial theorem
Question 8 - Equation & inequalities: Number of intersections between line and curve
Question 9 - Trigonometry: Prove identity, then solve equation
Question 10 - Differentiation: Normal to the curve (with Trigonometry)
Question 11 - Differentiation: Connected rate of change
Question 12 - Trigonometry
Question 13 - Circle
(a)
\begin{align*}
\text{Eqn of chord: } & 2y - 3x =1 7 \\
2y & = 3x + 17 \\
y & = {3 \over 2}x + {17 \over 2} \phantom{000000} [y = mx + c] \\
\\
\text{Gradient of chord} & = {3 \over 2} \\
\text{Gradient of diameter // } AB & = {3 \over 2} \\
\\
y & = mx + c \\
y & = {3 \over 2}x + c \\
\\
\text{Using } & D\left(-{1 \over 2}, {1 \over 4}\right), \\
{1 \over 4} & = {3 \over 2}\left(-{1 \over 2}\right) + c \\
{1 \over 4} & = -{3 \over 4} + c \\
1 & = c \\
\\
\text{Eqn of diameter // } AB: & y = {3 \over 2}x + 1 \\
\\
\text{Let } & y = -2, \phantom{000000} [y \text{-coordinate of centre} = -2] \\
-2 & = {3 \over 2}x + 1 \\
-{3 \over 2}x & = 3 \\
x & = 3 \div -{3 \over 2} \\
x & = -2 \\
\\
\text{Centre, }C & (-2, -2) \\
\\
\text{Radius} & = AC \\
& = \sqrt{ [-2 -(-1)]^2 + (-2 - 7)^2 } \\
& = \sqrt{82} \\
\\
\text{Eqn of circle: } & [x - (-2)]^2 + [y - (-2)]^2 = (\sqrt{82})^2 \\
& \phantom{000-.} (x + 2)^2 + (y + 2)^2 = 82
\end{align*}
(b)
\begin{align*}
\text{Eqn of circle: } & (x + 2)^2 + (y + 2)^2 = 82 \\
\\
\text{Let } & x = 7, \\
(7 + 2)^2 + (y + 2)^2 & = 82 \\
81 + (y + 2)^2 & = 82 \\
(y + 2)^2 & = 1 \\
y + 2 & = \pm \sqrt{1} \\
y + 2 & = 1 \text{ or } - 1 \\
y & = -1 \text{ or } - 3
\end{align*}
\begin{align*}
[\text{Any point on the } \text{blue line will have } & x \text{-coordinate }7 \text{ AND be inside the circle}] \\
\\
\text{Set of values: } \{ \alpha: & \alpha \in \mathbb{R}, -3 < \alpha < -1 \}
\end{align*}