A Maths Textbook Solutions >> Think! Additional Mathematics Textbook (10th edition) Solutions >>
Ex 11B
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
ddx(2x+5)7=7(2x+5)6.[2(1)+0]=7(2x+5)6(2)=14(2x+5)6
(b)
ddx(3−4x)8=8(3−4x)7.[0−4(1)]=8(3−4x)7(−4)=−32(3−4x)7
(c)
ddx(12x−4)5=5(12x−4)4.[12(1)−0]=5(12x−4)4(12)=52(12x−4)4
(d)
ddx[3(x+4)9]=3(9)(x+4)8.(1+0)=27(x+4)8(1)=27(x+4)8
(e)
ddx[(5x−3)68]=ddx[18(5x−3)6]=18(6)(5x−3)5.(5−0)=34(5x−3)5(5)=154(5x−3)5
(f)
ddx[23(x6−1)4]=23(4)(x6−1)3.(16−0)=83(x6−1)3(16)=49(x6−1)3
(a)
ddx(13x+2)=ddx(3x+2)−1=(−1)(3x+2)−2.(3+0)=−(3x+2)−2(3)=−3(3x+2)2
(b)
ddx(62−5x)=ddx[6(2−5x)−1]=6(−1)(2−5x)−2.(0−5)=−6(2−5x)−2(−5)=30(2−5x)−2=30(2−5x)2
(c)
ddx(122+3x2)=ddx[12(2+3x2)−1]=12(−1)(2+3x2)−2.(0+6x)=−12(2+3x2)−2(6x)=−72x(2+3x2)−2=−72x(2+3x2)2
(d)
ddx[1(x2+2)3]=ddx[(x2+2)−3]=(−3)(x2+2)−4.(2x+0)=−3(x2+2)−4(2x)=−6x(x2+2)−4=−6x(x2+2)4
(e)
ddx[5(3−4x)3]=ddx[5(3−4x)−3]=5(−3)(3−4x)−4.(0−4)=−15(3−4x)−4(−4)=60(3−4x)−4=60(3−4x)4
(f)
ddx[34(5−3x2)]=ddx[34(5−3x2)−1]=34(−1)(5−3x2)−2.(0−6x)=−34(5−3x2)−2(−6x)=9x2[1(5−3x2)2]=9x2(5−3x2)2
(a)
ddx√2x+3=ddx(2x+3)12=12(2x+3)−12.(2+0)=12(2x+3)−12(2)=(2x+3)−12=1√2x+3
(b)
ddx√6−5x2=ddx(6−5x2)12=12(6−5x2)−12.(0−10x)=12(6−5x2)−12(−10x)=−5x(6−5x2)−12=−5x√6−5x2
(c)
ddx√3x3−4=ddx(3x3−4)12=12(3x3−4)−12.(9x2−0)=12(3x3−4)−12(9x2)=9x22(1√3x3−4)=9x22√3x3−4
(d)
ddx3√2x2+5=ddx(2x2+5)13=13(2x2+5)−23.(4x+0)=13(2x2+5)−23(4x)=4x3(13√(2x2+5)2)=4x33√(2x2+5)2
(e)
ddx3√27−x6=ddx(27−x6)13=13(27−x6)−23.(0−6x5)=13(27−x6)−23(−6x5)=−2x5(13√(27−x6)2)=−2x53√(27−x6)2
(f)
ddx(2√x−3)=ddx[2(x−3)−12]=2(−12)(x−3)−32.(1−0)=−(x−3)−32(1)=−(x−3)−32=−1√(x−3)3
Question 4 - Find gradient of curve
y=(3x2−5x+3)3dydx=3(3x2−5x+3)2.(6x−5+0)=3(6x−5)(3x2−5x+3)2When x=1,dydx=3[6(1)−5][3(1)2−5(1)+3]2=3
y=2t+5+45t−9=2t+5+4(5t−9)−1dydt=2(1)+0+4(−1)(5t−9)−2.(5−0)=2−4(5t−9)−2(5)=2−20(5t−9)−2=2−20(5t−9)2When t=2,dydt=2−20[5(2)−9]2=−18
Question 6 - Find gradient of curve
y=2+12(3x−4)2=2+12(3x−4)−2dydx=0+12(−2)(3x−4)−3.(3−0)=−24(3x−4)−3(3)=−72(3x−4)−3=−72(3x−4)3When x=2,dydx=−72[3(2)−4]3=−9
(a)
ddx(x2+3x)5=ddx(x2+3x−1)5=5(x2+3x−1)4.[2x+3(−1)x−2]=5(x2+3x)4[2x−3(1x2)]=5(x2+3x)4(2x−3x2)
(b)
ddx(23√2x2−5)=ddx[23(2x2−5)−12]=23(−12)(2x2−5)−32.(4x−0)=−13(2x2−5)−32(4x)=−4x3(1√(2x2−5)3)=−4x3√(2x2−5)3
(c)
ddx(4−√x)10=ddx(4−x12)10=10(4−x12)9.(0−12x−12)=10(4−√x)9(−12√x)=−10(4−√x)92√x=−5(4−√x)9√x
(d)
ddx(x+5−63√x)6=ddx(x+5−6x13)6=6(x+5−6x13)5.[1+0−6(13)x−23]=6(x+5−63√x)5[1−2(13√x2)]=6(x+5−63√x)5(1−23√x2)
(e)
ddx(x+2x)13=ddx(x+2x−1)13=13(x+2x−1)−23.[1+2(−1)x−2]=13(x+2x)−23[1−2(1x2)]=13(x+2x)−23(1−2x2)
(f)
(3x−1)2√3x−1=(3x−1)2(3x−1)12=(3x−1)5200000000[am×an=am+n]ddx(3x−1)52=52(3x−1)32.(3)=152(3x−1)32=152√(3x−1)3
Question 8 - Form equation of straight line
y=(5−√x)4=(5−x12)4dydx=4(5−x12)3.[0−12x−12]=4(5−√x)3[12(1√x)]=4(5−√x)3(12√x)=4(5−√x)32√x=2(5−√x)3√xWhen x=16,dydx=2(5−√16)3√16=12y=mx+cy=12x+cLet c=0,Eqn of line:00y=12x
Question 9 - Tangent to the curve parallel to x-axis
If the tangent to the curve is parallel to the x-axis (horizontal line), the gradient of the tangent is equals to 0
y=√x2−4x+8=(x2−4x+8)12dydx=12(x2−4x+8)−12.(2x−4+0)=12(1√x2−4x+8)(2x−4)=2x−42√x2−4x+8=2(x−2)2√x2−4x+8=x−2√x2−4x+8Let dydx=0,0=x−2√x2−4x+80=x−22=xSubstitute x=2 into eqn of curve,y=√(2)2−4(2)+8=2∴Coordinates is (2, 2)
Question 10 - Partial fractions
(i)
10x−112x2−3x−5=10x−11(2x−5)(x+1)=A2x−5+Bx+1=A(x+1)+B(2x−5)(2x−5)(x+1)∴10x−11=A(x+1)+B(2x−5)Let x=2.5,10(2.5)−11=A(2.5+1)+B(0)14=3.5A143.5=A4=A10x−11=4(x+1)+B(2x−5)Let x=−1,10(−1)−11=4(0)+B[2(−1)−5]−21=B(−7)−21=−7B−21−7=B3=B∴10x−11(2x−5)(x+1)=42x−5+3x+1
(ii) Apply the result from part (i)
ddx(10x−112x2−3x−5)=ddx(42x−5+3x+1)=ddx[4(2x−5)−1+3(x+1)−1]=4(−1)(2x−5)−2.(2−0)+3(−1)(x+1)−2.(1+0)=−4(2x−5)−2(2)−3(x+1)−2(1)=−8(2x−5)−2−3(x+1)−2=−8(2x−5)2−3(x+1)2
y=a2+bxUsing (1,1),1=a2+b(1)1=a2+b2+b=a000--- (1)y=a(2+bx)−1dydx=a(−1)(2+bx)−2.(0+b)=−a(2+bx)−2(b)=−ab(2+bx)−2=−ab(2+bx)2Substitute x=1 and dydx=35,35=−ab[2+b(1)]235=−ab(2+b)23(2+b)2=5(−ab)3[22+2(2)(b)+b2]=−5ab3(4+4b+b2)=−5ab12+12b+3b2=−5ab000--- (2)Substitute (1) into (2),12+12b+3b2=−5(2+b)(b)12+12b+3b2=−5(2b+b2)12+12b+3b2=−10b−5b28b2+22b+12=04b2+11b+6=0(4b+3)(b+2)=0 4b+3=0 or b+2=04b=−3b=−2 (Reject, since y=a2+bx is undefined at (1, 1))b=−34Substitute b=−34 into (1),a=−34+2=54∴a=54,b=−34
More on why we reject b=−2: When b=−2,y=a2+(−2)xy=a2−2xSubstitute x=1,000000[For the point (1,1)]y=a2−2(1)y=a00000000[Undefined]
y=1√x2−2=(x2−2)−12dydx=−12(x2−2)−32.(2x−0)=−12(1√(x2−2)3)(2x)=−x(1√(x2−2)3)=−x√(x2−2)3To show that (x2−2)dydx+xy=0,L.H.S=(x2−2)dydx+xy=(x2−2)[−x√(x2−2)3]+x(1√x2−2)=−x(x2−2)(x2−2)32+x(x2−2)12×(x2−2)(x2−2)=−x(x2−2)(x2−2)32+x(x2−2)(x2−2)32=−x(x2−2)+x(x2−2)(x2−2)32=0(x2−2)32=0=R.H.S
If the graph of f'(x) lies entirely below the x-axis, the gradient of the graph y = f(x) is always negative
f(x)=√4−√x=(4−x12)12f′(x)=12(4−x12)−12.(0−12x−12)=12(1√4−√x)[−12(1√x)]=12√4−√x(−12√x)=−14√x√4−√x For f′(x)<0,4√x√4−√x>000000[I.e. denominator of f′(x) must be positive]Since 4√x is always positive for x>0,√4−√x>04−√x>0−√x>−4√x<4x<16Since x>0, range of values: 0<x<16