Right-angle in semi-circle
If points $A$, $B$ and $C$ are points on the circumference of the circle and $AC$ is the diameter of the circle, then $\angle ABC = 90^\circ$.
Example
Three points are given by $A(1, 4)$, $B(9, 8)$ and $C(7, 12)$.
(i) Show that angle $ABC$ is $90^\circ$.
Solutions (by gradient)
\begin{align*}
\text{Gradient of } AB & = {y_2 - y_1 \over x_2 - x_1} \\
& = {8 - 4 \over 9 - 1} \\
& = {1 \over 2} \\
\\
\text{Gradient of } BC & = {12 - 8 \over 7 - 9} \\
& = -2 \\
\\
{1 \over 2} \times -2 & = -1 \\
\\
\implies AB \text{ is perpendicular to } & BC \text{ and } \angle ABC = 90^\circ
\end{align*}
Solutions (by Pythagoras theorem)
\begin{align*}
\text{Length of } AB & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 } \\
& = \sqrt{ (9 - 1)^2 + (8 - 4)^2 } \\
& = \sqrt{80} \\
\\
\text{Length of } BC & = \sqrt{ (7 - 9)^2 + (12 - 8)^2 } \\
& = \sqrt{20} \\
\\
\text{Length of } AC & = \sqrt{ (7 - 1)^2 + (12 - 4)^2 } \\
& = 10 \\
\\
AB^2 + BC^2 & = (\sqrt{80})^2 + (\sqrt{20})^2 = 100 \\
\\
AC^2 & = 10^2 = 100 \\
\\
\text{Since } AC^2 = AB^2 + BC^2, & \text{ by the converse of Pythagoras theorem, }\\
\text{triangle } ABC \text{ is a right-an} & \text{gled triangle and } \angle ABC = 90^\circ
\end{align*}
(ii) Hence, find the equation of the circle that passes through the points $A$, $B$ and $C$.
Answer: $ (x - 4)^2 + (y - 8)^2 = 25 $
Solutions
(By the property right-angle in a semicircle, $AC$ is the diameter of the circle)
\begin{align*}
\text{Length of } AC & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 } \\
& = \sqrt{ (7 - 1)^2 + (12 - 4)^2 } \\
& = 10 \text{ units} \\
\\
\text{Radius} & = {10 \over 2} = 5 \text{ units} \\
\\
\text{Midpoint of } AC & = \left( {x_1 + x_2 \over 2}, {y_1 + y_2 \over 2} \right) \\
& = \left( {1 + 7 \over 2}, {4 + 12 \over 2} \right) \\
& = (4, 8) \\
\\
\text{Centre: } & (4, 8) \\
\\
\text{Eqn: } (x - 4)^2 & + (y - 8)^2 = 5^2 \\
(x - 4)^2 & + (y - 8)^2 = 25
\end{align*}
Perpendicular bisector of chord
The perpendicular bisector of chord $AB$ will pass through the centre of the circle, $O$.
Example 1
A circle passes through the points $(2, 3)$ and $(-1, 6)$. Its centre lies on the line $2x + 5y = -1$.
(i) Find the centre of the circle.
Answer: $ (-3, 1) $
Solutions
(The line and the perpendicular bisector will meet at the centre)
\begin{align*}
\text{Midpoint of } (-1, 6) \text{ and } (2, 3) & = \left( {x_1 + x_2 \over 2}, {y_1 + y_2 \over 2} \right) \\
& = \left( {-1 + 2 \over 2}, {6 + 3 \over 2} \right) \\
& = (0.5, 4.5) \\
\\
\text{Gradient between two points} & = {y_2 - y_1 \over x_2 - x_1} \\
& = {3 - 6 \over 2 - (-1)} \\
& = -1 \\
\\
\text{Gradient of perpendicular bisector} & = -1 \div -1 \phantom{000000} [m_1 \times m_2 = -1 \implies m_1 = -1 \div m_2] \\
& = 1 \\
\\
y & = mx + c \\
y & = x + c \\
\\
\text{Using } & (0.5, 4.5), \\
4.5 & = 0.5 + c \\
4 & = c \\
\\
\text{Eqn of perp. bisector: } & y = x + 4 \phantom{0} \text{--- (1)} \\
\\
2x & + 5y = -1 \phantom{0} \text{--- (2)} \\
\\
\text{Substitute } & \text{(1) into (2),} \\
2x + 5(x + 4) & = -1 \\
2x + 5x + 20 & = -1 \\
7x & = -21 \\
x & = -3 \\
\\
\text{Substitute } & x = -3 \text{ into (1),} \\
y & = -3 + 4 \\
y & = 1 \\
\\
\therefore \text{Centre: } & (-3, 1)
\end{align*}
(ii) Find the equation of the circle.
Answer: $ (x + 3)^2 + (y - 1)^2 = 29 $
Solutions
\begin{align*}
\text{Radius} & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 }
\phantom{000000} [\text{Distance between centre and one of the point}] \\
& = \sqrt{ [-3 -(-1)]^2 + (1 - 6)^2 } \\
& = \sqrt{29} \text{ units} \\
\\
\text{Eqn: } & (x + 3)^2 + (y - 1)^2 = (\sqrt{29})^2 \\
& (x + 3)^2 + (y - 1)^2 = 29
\end{align*}
Example 2: Use three points on circle to locate centre of circle
A circles passes through the origin and the points $A(1, -1)$ and $B(4, 0)$. Find the coordinates of the centre of the circle.
Answer: $ (2, 1) $
Solutions
The perpendicular bisector of chords $OA$ and $AB$ will meet at the centre
\begin{align*}
\text{Midpoint of } OA & = \left({0 + 1 \over 2}, {0 + (-1) \over 2} \right) \\
& = \left( {1 \over 2}, -{1 \over 2}\right) \\
\\
\text{Gradient of } OA & = {-1 - 0 \over 1 - 0} \\
& = -1 \\
\\
\text{Gradient of perp. bisector} \times -1 & = -1 \\
\text{Gradient of perp. bisector} & = 1 \\
\\
y & = mx + c \\
y & = x + c \\
\\
\text{Using } & \left({1 \over 2}, -{1 \over 2}\right), \\
-{1 \over 2} & = {1 \over 2} + c \\
-1 & = c \\
\\
\text{Eqn of perp. bisector of } OA : & \phantom{.} y = x - 1 \phantom{000} \text{--- (1)} \\
\\
\\
\text{Midpoint of } AB & = \left({1 + 4 \over 2}, {-1 + 0 \over 2} \right) \\
& = \left( {5 \over 2}, -{1 \over 2}\right) \\
\\
\text{Gradient of } AB & = {0 - (-1) \over 4 - 1} \\
& = {1 \over 3} \\
\\
\text{Gradient of perp. bisector} \times {1 \over 3} & = -1 \\
\text{Gradient of perp. bisector} & = {-1 \over {1 \over 3}} \\
& = -3 \\
\\
y & = mx + c \\
y & = -3x + c \\
\\
\text{Using } & \left({5 \over 2}, -{1 \over 2}\right), \\
-{1 \over 2} & = -3\left(5 \over 2\right) + c \\
-{1 \over 2} & = -{15 \over 2} + c \\
7 & = c \\
\\
\text{Eqn of perp. bisector of } AB : & \phantom{.} y = -3x + 7 \phantom{000} \text{--- (2)} \\
\\
\text{Substitute } & \text{(1) into (2),} \\
x - 1 & = -3x + 7 \\
x + 3x & = 7 + 1 \\
4x & = 8 \\
x & = {8 \over 4} \\
& = 2 \\
\\
\text{Substitute } & \text{into (1),} \\
y & = 2 - 1 \\
& = 1 \\
\\
\therefore \text{Centre: } & (2, 1)
\end{align*}
Tangent & normal to the circle
The tangent to the circle at $P$ (blue line) is perpendicular to the radius $OP$.
The normal to the circle at $P$ (red line) is perpendicular to the tangent and it passes through the centre of the circle.
Example 1: Form equation of tangent & normal
The equation of a circle is $(x - 1)^2 + (y - 2)^2 = 5$.
(i) Find the equation of the normal to the circle at $P(2, 4)$.
Answer: $ y = 2x $
Solutions
\begin{align*}
(x - 1)^2 + (y - 2)^2 & = 5 \\
\\
\text{Centre: } (1, 2), & \text{ Radius} = \sqrt{5} \text{ units} \\
\\
\text{Gradient of normal} & = \text{Gradient of } OP \\
& = { y_2 - y_1 \over x_2 - x_1} \\
& = { 4 - 2 \over 2 - 1} \\
& = 2 \\
\\
y & = mx + c \\
y & = 2x + c \\
\\
\text{Using } & P(2, 4), \\
4 & = 2(2) + c \\
4 & = 4 + c \\
0 & = c \\
\\
\text{Eqn of normal: } & y = 2x
\end{align*}
(ii) Find the equation of the tangent to the circle at $P(2, 4)$.
Answer: $ y = -{1 \over 2}x + 5 $
Solutions
\begin{align*}
\text{Gradient of tangent} & = -1 \div \text{Gradient of normal}
\phantom{000000} [m_1 \times m_2 = -1 \implies m_1 = -1 \div m_2] \\
& = -1 \div 2 \\
& = -{1 \over 2} \\
\\
y & = mx + c \\
y & = -{1 \over 2}x + c \\
\\
\text{Using } & P(2, 4), \\
4 & = -{1 \over 2}(2) + c \\
4 & = -1 + c \\
5 & = c \\
\\
\text{Eqn of tangent: } & y = -{1 \over 2}x + 5
\end{align*}
Example 2: Find equation of circle
The line $y = -x + 6$ is tangent to a circle at point $A$. The centre of the circle is $(0, 1)$.
(i) Find the coordinates of point $A$.
Answer: $ A(2.5, 3.5) $
Solutions
\begin{align*}
y & = -x + 6 \phantom{000000} [y = mx + c] \\
\\
\text{Gradient of tangent} & = -1 \\
\\
\text{Gradient of normal} & = -1 \div -1 \phantom{000000} [m_1 \times m_2 = -1 \implies m_1 = -1 \div m_2] \\
& = 1 \\
\\
y & = mx + c \\
y & = x + c \\
\\
\text{Using } & \text{centre } (0, 1), \\
1 & = 0 + c \\
1 & = c \\
\\
\text{Eqn of normal: } & y = x + 1 \phantom{0} \text{--- (1)} \\
\\
\text{Eqn of tangent: } & y = -x + 6 \phantom{0} \text{--- (2)} \\
\\
\text{Substitute } & \text{(1) into (2),} \\
x + 1 & = -x + 6 \\
2x & = 5 \\
x & = 2.5 \\
\\
\text{Substitute } & x = 2.5 \text{ into (1),} \\
y & = 2.5 + 1 \\
y & = 3.5 \\
\\
\therefore & \phantom{.} A(2.5, 3.5)
\end{align*}
(ii) Find the equation of the circle.
Answer: $ x^2 + (y - 1)^2 = 12.5 $
Solutions
\begin{align*}
\text{Radius} & = \text{Distance between } A(2.5, 3.5) \text{ and centre } (0, 1) \\
& = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 } \\
& = \sqrt{ (0 - 2.5)^2 + (1 - 3.5)^2 } \\
& = \sqrt{ 12.5 } \text{ units} \\
\\
\text{Eqn: } & (x - 0)^2 + (y - 1)^2 = (\sqrt{12.5})^2 \\
& \phantom{00000} x^2 + (y - 1)^2 = 12.5
\end{align*}
Example 3: x-axis, y-axis, vertical line and horizontal line as tangent
Find the equation of the following circles:
(i) A circle, $C_1$, with centre $(-3, 2)$ that touches the $x$-axis.
(from think! A Maths Workbook Worksheet 7D)
Answer: $ (x + 3)^2 + (y - 2)^2 = 4 $
Solutions
\begin{align}
[x - (-3)]^2 + (y - 2)^2 & = 2^2 \\
(x + 3)^2 + (y - 2)^2 & = 4
\end{align}
(ii) A circle, $C_2$, with centre $(-2, 2)$ that touches both the $x$-axis and $y$-axis.
(from A Maths 360 Ex 8.1)
Answer: $ (x + 2)^2 + (y - 2)^2 = 4 $
Solutions
\begin{align}
\text{Radius} & = 2 \text{ units} \\
\\
[x - (-2)]^2 + (y - 2)^2 & = 2^2 \\
(x + 2)^2 + (y - 2)^2 & = 4
\end{align}
(iii) A circle, $C_3$, such that the positive $x$-axis, negative $y$-axis and the line $x = 12$ are tangents to the circle.
(from A Maths 360 Ex 8.1)
Answer: $ (x - 6)^2 + (y + 6)^2 = 36 $
Solutions
\begin{align}
\text{Radius} & = 6 \text{ units} \\
\\
\text{Centre: } & (6, -6) \\
\\
(x - 6)^2 + [y - (-6)]^2 & = 6^2 \\
(x - 6)^2 + (y + 6)^2 & = 36
\end{align}
Past year O level questions
| Year & paper |
Comments |
| 2022 P2 Question 9 |
Tangent perpendicular to radius |
| 2021 P2 Question 9 |
Tangent perpendicular to radius |
| 2020 P1 Question 9 |
Tangent perpendicular to radius |
| 2019 P2 Question 6 |
Tangent perpendicular to radius |
| 2018 P2 Question 11 |
Right-angle in semi-circle |
| 2017 P1 Question 12 |
Normal to the circle |
| 2016 P2 Question 11 |
Tangent perpendicular to radius |
| 2015 P2 Question 7 |
x-axis and y-axis are tangents to the circle |
| 2014 P2 Question 10 |
Tangent perpendicular to radius |
| 2013 P2 Question 10 |
Tangent perpendicular to radius |
| 2011 P2 Question 11 |
Tangent perpendicular to radius |
← Circles: Equation
Linear law →