Formulas
Standard form (i.e. centre & radius form):
$ \text{Equation: } $$ (x - a)^2 + (y - b)^2 = r^2 $
$ \text{Centre: } $$ (a, b) $
$ \text{Radius} = \phantom{.} $$ r \text{ units} $
General form:
$ \text{Equation: } $$ x^2 + y^2 + 2gx + 2fy + c = 0 $
$ \text{Centre: } $$ (-g, -f) $
$ \text{Radius} = \phantom{.} $$ \sqrt{ g^2 + f^2 - c } $
Example
(i) State the coordinates of the centre and the radius of the circle with equation $(x - 2)^2 + (y + 1)^2 = 9$.
Answer: $ \text{Centre: } (2, -1), \text{ Radius} = 3 \text{ units} $
(ii) Find the coordinates of the centre and the radius of the circle with equation $2x^2 + 2y^2 + 8x - 12y + 8 = 0$.
Answer: $ \text{Centre: } (-2, 3), \text{ Radius} = 3 \text{ units} $
Solutions (by using general form)
\begin{align*}
2x^2 + 2y^2 & + 8x - 12y + 8 = 0 \\
x^2 + y^2 & + 4x - 6y + 4 = 0 \\
\\
2g & = 4 \\
g & = {4 \over 2} = 2 \\
\\
2f & = -6 \\
f & = {-6 \over 2} = - 3 \\
\\
c & = 4 \\
\\
\therefore \text{Coordinates} & \text{ of centre is } (-2, 3) \\
\\
\text{Radius} & = \sqrt{2^2 + (-3)^2 - 4} \\
& = 3 \text{ units}
\end{align*}
Solutions (by completing the square)
\begin{align*}
2x^2 + 2y^2 + 8x - 12y + 8 & = 0 \\
x^2 + y^2 + 4x - 6y + 4 & = 0 \\
x^2 + 4x + y^2 - 6y + 4 & = 0 \\
\left(x + {4 \over 2}\right)^2 - \left(4 \over 2\right)^2 + y^2 - 6y + 4 & = 0 \phantom{00000} [\text{Complete the square for } x] \\
(x + 2)^2 - 4 + y^2 - 6y + 4 & = 0 \\
(x + 2)^2 + y^2 - 6y & = 0 \\
(x + 2)^2 + \left(y - {6 \over 2}\right)^2 - \left(6 \over 2\right)^2 & = 0 \phantom{00000} [\text{Complete the square for } y ] \\
(x + 2)^2 + (y - 3)^2 - 9 & = 0 \\
(x + 2)^2 + (y - 3)^2 & = 9 \\
(x + 2)^2 + (y - 3)^2 & = 3^2 \\
\\
\therefore \text{Coordinates} & \text{ of centre is } (-2, 3) \\
\\
\text{Radius} & = 3 \text{ units}
\end{align*}
Questions
Locate the centre of the circle
1. A circle has radius of $4$ units and passes through the origin. Given that the line $y = 3x - 4$ passes through the centre of the circle and the $x$-coordinate of the centre is positive, find the coordinates of the centre of the circle.
Answer: $ (2.4, 3.2) $
Solutions
\begin{align*}
\text{Let centre of circle} & \text{ be } (a, b) \\
\\
(x - a)^2 + (y - b)^2 & = 4^2 \\
\\
\text{Since circle passes thr} & \text{ough } O(0,0), \\
(0 - a)^2 + (0 - b)^2 & = 4^2 \\
(-a)^2 + (-b)^2 & = 16 \\
a^2 + b^2 & = 16 \phantom{0} \text{--- (1)} \\
\\
\text{Since line } y = 3x - 4 \text{ pa} & \text{sses through } (a, b), \\
b & = 3a - 4 \phantom{0} \text{--- (2)} \\
\\
\text{Substitute (1) } & \text{into (2),} \\
a^2 + (3a - 4)^2 & = 16 \\
a^2 + \underbrace{ (3a)^2 - 2(3a)(4) + (4)^2 }_{(a - b)^2 = a^2 - 2ab + b^2} & = 16 \\
a^2 + 9a^2 - 24a + 16 & = 16 \\
10a^2 - 24a & = 0 \\
2a (5a - 12) & = 0
\end{align*}
\begin{align*}
2a & = 0 && \text{ or } & 5a - 12 & = 0 \\
a & = 0 \text{ (N.A.)} &&& 5a & = 12 \\
& &&& a & = {12 \over 5} \\
& &&& a & = 2.4 \\
\\
& &&& \text{Substitute } & \text{into (2),} \\
& &&& b & = 3(2.4) - 4 \\
& &&& b & = 3.2 \\
\\
& &&& \therefore & \phantom{.} (2.4, 3.2)
\end{align*}
Does a point lie inside, outside or on the circle?
- If a point lies inside the circle, distance between centre and the point < radius of circle
- If a point lies outside the circle, distance between centre and the point > radius of circle
- If a point lies on the circle, distance between centre and the point = radius of circle
2. The equation of a circle is $x^2 + y^2 - 10 = 0$. By showing appropriate workings, determine the point $(2, 2)$ lies inside or outside the circle.
Answer: Inside the circle
Solutions
\begin{align*}
x^2 + y^2 - 10 & = 0 \\
x^2 + y^2 & = 10 \\
(x - 0)^2 + (y - 0)^2 & = (\sqrt{10})^2 \\
\\
\text{Centre: } (0, 0), & \text{ Radius} = \sqrt{10} \text{ units} \\
\\
\text{Distance between }(0, 0) \text{ and } (2, 2) & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 } \\
& = \sqrt{ (2 - 0)^2 + (2 - 0)^2 } \\
& = \sqrt{8} \text{ units} < \text{Radius} \\
\\
\therefore (2, 2) & \text{ lies inside the circle}
\end{align*}
Diameter of circle
3. Points $A$ and $B$ have coordinates $(7, 6)$ and $(3, 4)$ respectively. Given that $AB$ is the diameter of a circle, find the equation of the circle.
Answer: $ (x - 5)^2 + (y - 5)^2 = 5 $
Solutions
\begin{align*}
\text{Length of } AB & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 } \\
& = \sqrt{ (3 - 7)^2 + (4 - 6)^2 } \\
& = \sqrt{20} \\
& = \sqrt{4} \times \sqrt{5} \phantom{000000} [ \sqrt{a \times b} = \sqrt{a} \times \sqrt{b} ] \\
& = 2 \sqrt{5} \text{ units} \\
\\
\text{Radius} & = { 2 \sqrt{5} \over 2 } \\
& = \sqrt{5} \text{ units} \\
\\
\text{Midpoint of } AB & = \left( {x_1 + x_2 \over 2}, {y_1 + y_2 \over 2} \right) \\
& = \left( { 7 + 3 \over 2}, {6 + 4 \over 2} \right) \\
& = (5, 5) \\
\\
\implies \text{Centre: } & (5, 5) \\
\\ \\
\text{Eqn: } (x - 5)^2 & + (y - 5)^2 = (\sqrt{5})^2 \\
(x - 5)^2 & + (y - 5)^2 = 5
\end{align*}
Line intersects circle
4. The line $y = -x + 5$ cuts the circle $(x + 1)^2 + (y - 2)^2 = 16$ at points $A$ and $B$. Find the length of $AB$ and state whether $AB$ passes through the centre of the circle.
Answer: $ \sqrt{32} \text{ units} $, does not pass through centre
Solutions
\begin{align*}
(x + 1)^2 & + (y - 2)^2 = 16 \phantom{0} \text{--- (1)} \\
\\
\text{Centre: } & (-1, 2), \text{ Radius} = \sqrt{16} = 4 \text{ units} \\
\\
y & = -x + 5 \phantom{0} \text{--- (2)} \\
\\
\text{Substi} & \text{tute (2) into (1),}
\end{align*}
\begin{align*}
(x + 1)^2 + (- x + 5 - 2)^2 & = 16 \\
(x + 1)^2 + (3 - x)^2 & = 16 \\
\underbrace{ (x)^2 + 2(x)(1) + (1)^2}_{(a + b)^2 = a^2 + 2ab + b^2}
+ \underbrace{ (3)^2 - 2(3)(x) + (x)^2}_{(a - b)^2 = a^2 - 2ab + b^2 } & = 16 \\
x^2 + 2x + 1 + 9 - 6x + x^2 & = 16 \\
2x^2 - 4x + 10 & = 16 \\
2x^2 - 4x - 6 & = 0 \\
x^2 - 2x - 3 & = 0 \\
(x - 3)(x + 1) & = 0
\end{align*}
\begin{align*}
x - 3 & = 0 && \text{ or } & x + 1 & = 0 \\
x & = 3 &&& x & = -1 \\
\\
\text{Substitute } & \text{into (2),} &&& \text{Substitute } & \text{into (2),} \\
y & = -3 + 5 &&& y & = -(-1) + 5 \\
y & = 2 &&& y & = 6 \\
\\
\therefore & \phantom{.} (3, 2) &&& \therefore & \phantom{.} (-1, 6)
\end{align*}
\begin{align*}
\text{Length of } AB & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2 } \\
& = \sqrt{ (-1 - 3)^2 + (6 - 2)^2 } \\
& = \sqrt{ 32 } \text{ units} \\
& = 5.657 \text{ units} \\
\\
\text{Diameter of circle} & = 4 \times 2 \\
& = 8 \text{ units} \\
\\
\text{Since } AB < \text{Diameter}, & \phantom{.} AB \text{ does not pass through centre of circle}
\end{align*}
Discriminant: How many times a line intersects circle
Steps:
- Substitute equation of line into equation of circle
- Simplify equation to form a quadratic equation, i.e. $ax^2 + bx + c = 0$
- Apply the relevant discriminant conditions:
- Line meets circle at two points $\implies b^2 - 4ac > 0$
- Line meets circle at one point or is tangent to the circle $\implies b^2 - 4ac = 0$
- Line does not meet circle $\implies b^2 - 4ac < 0$
5. Find the range of values of $m$ for which the line $y = mx - 1$ intersects the circle $x^2 + y^2 - 4x + 3 = 0$ at two distinct points.
Answer: $ 0 < m < {4 \over 3} $
Solutions
\begin{align*}
y & = mx - 1 \phantom{0} \text{--- (1)} \\
\\
x^2 & + y^2 - 4x + 3 = 0 \phantom{0} \text{--- (2)} \\
\\
\text{Substitute} & \text{ (1) into (2),}
\end{align*}
\begin{align*}
x^2 + (mx - 1)^2 - 4x + 3 & = 0 \\
x^2 + \underbrace{ (mx)^2 - 2(mx)(1) + (1)^2}_{(a - b)^2 = a^2 - 2ab + b^2} - 4x + 3 & = 0 \\
x^2 + m^2 x^2 - 2mx + 1 - 4x + 3 & = 0 \\
(1 + m^2)x^2 + (-2m - 4)x + 4 & = 0
\end{align*}
\begin{align*}
b^2 - 4ac & = (-2m - 4)^2 - 4(1 + m^2)(4) \\
& = (-2m)^2 - 2(-2m)(4) + (4)^2 - 16(1 + m^2) \\
& = 4m^2 + 16m + 16 - 16 - 16m^2 \\
& = -12m^2 + 16m \\
\\
b^2 - 4ac & > 0 \phantom{000000} [\text{Two real roots since line meets circle at two points}] \\
-12m^2 + 16m & > 0 \\
12m^2 - 16m & < 0 \\
4m (3m - 4) & < 0
\end{align*}
$$ 0 < m < {4 \over 3} $$
Past year O level questions
| Year & paper |
Comments |
| 2025 P1 Question 13 |
(Tough question in general) |
| 2024 P2 Question 7 |
(Look out for parts c & d) |
| 2023 P1 Question 10 |
(Look out for part c) |
| 2012 P1 Question 13 |
|
| 2010 P1 Question 12 |
|
| 2009 P2 Question 9 |
|
| 2008 P2 Question 11 |
|
← Coordinate geometry: Geometry problems
Circles: Circle properties →